Долговечность - определение. Что такое Долговечность
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Долговечность - определение

Назначенный ресурс; Назначенный срок службы
Найдено результатов: 10
Долговечность         

свойство изделия сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов. Предельное состояние изделия определяется в зависимости от его схемно-конструктивных особенностей, режима эксплуатации и сферы использования. Для многих неремонтируемых изделий (например, осветительные лампы, шестерни, узлы бытовых электро- и радиоприборов) предельное состояние совпадает с Отказом. В ряде случаев предельное состояние определяется достижением периода повышенной интенсивности отказов. Таким методом определяется предельное состояние для компонент автоматических устройств, выполняющих ответственные функции. Применение этого метода обусловлено снижением эффективности эксплуатации изделий, компоненты которых имеют повышенную интенсивность отказов, а также нарушением требований безопасности. Период эксплуатации неремонтируемых изделий до предельного состояния устанавливается по результатам специальных испытаний и вносится в техническую документацию на изделия. Если нельзя заранее получить сведения об изменении интенсивности отказов, предельное состояние изделия определяется непосредственным обследованием его состояния в процессе эксплуатации.

Предельное состояние ремонтируемых изделий определяется неэффективностью их дальнейшей эксплуатации из-за старения и частых отказов или увеличения затрат на ремонт. В некоторых случаях критерием предельного состояния ремонтируемых изделий может быть нарушение требований безопасности, например на транспорте. Предельное состояние может также определяться моральным устареванием.

Различают показатели долговечности, характеризующие долговечность по наработке (См. Наработка) и по календарному времени службы. Показатель, характеризующий долговечность изделия по наработке, называется ресурсом (см. Ресурс технический); показатель, характеризующий долговечность по календарному времени, - сроком службы (См. Срок службы). Различают ресурс и срок службы до первого капитального ремонта, между капитальными ремонтами, до выбраковки изделия.

Лит.: Хевиленд Р., Инженерная надежность и расчет на долговечность, пер. с англ., М.-Л., 1966; Колегаев Р. Н., Определение оптимальной долговечности технических систем, М., 1967; Меламед Г. И., Счастливенко Ф. Е., Надежность и долговечность станочных систем, Минск, 1967; ГОСТ 13377-67. Надежность в технике. Термины, М., 1968; Проников А. С., Основы надежности и долговечности машин, М., 1969.

О. Г. Лосицкий, В. Н. Фомин.

Д. зданий и сооружений - предельный срок службы зданий и сооружений, в течение которого они сохраняют требуемые эксплуатационные качества. Различают Д. моральную и физическую. Моральная Д. (срок морального износа) характеризуется сроком службы зданий и сооружений до того момента, когда они перестают отвечать изменяющимся условиям эксплуатации или режимам технологических процессов. Физическая Д. определяется продолжительностью износа основных несущих конструкций и элементов (например, каркаса, стен, фундаментов и др.) под воздействием нагрузок и физико-химических факторов. При этом некоторые конструктивные элементы и части зданий и сооружений (лёгкое стеновое ограждение, кровля, перекрытия, полы, оконные переплёты, двери и прочее) могут иметь меньшую Д. и заменяться при капитальном ремонте. Постепенный физический износ конструкций происходит неравномерно в течение общего срока службы здания; в первый период после постройки - быстрее (что связано с деформациями конструкций, неравномерными осадками грунта и т.п.), а в последующий, преобладающий по длительности, - медленнее (нормальный износ). По окончании первого периода эксплуатации здания отдельные его конструкции могут нуждаться в специальном послеосадочном ремонте.

Д. сокращается при неправильной эксплуатации зданий и сооружений, перегрузках конструкций, а также при резко выраженных разрушающих влияниях окружающей среды (действие влаги, ветра, мороза и т.д.). Большое значение для обеспечения Д. имеет правильный выбор конструктивных решений с учётом особенностей климата и условий эксплуатации. Повышение Д. достигается применением строительных и изоляционных материалов, обладающих высокой стойкостью при замораживании и оттаивании, влагостойкостью, биостойкостью, и защитой конструкций от проникновения в них разрушающих агентов и прежде всего жидкой влаги. В строительных нормах и правилах, действующих в СССР, установлены следующие степени долговечности ограждающих конструкций: I степень со сроком службы не менее 100 лет, II - 50 лет и III - 20 лет.

Лит.: Долговечность ограждающих и строительных конструкций (Физические основы), под ред. О. Е. Власова, М., 1963; Ильинский В. М., Проектирование ограждающих конструкций зданий (с учетом физико-климатических воздействий), 2 изд., М., 1964; Долговечность строительных конструкций зданий химической промышленности. Сборник трудов, Ростов н/Д., 1968; Износ и защита строительных конструкций промышленных зданий с агрессивной средой производства, М., 1969.

Е. Г. Кутухтин.

долговечность         
ДОЛГОВ'ЕЧНОСТЬ, долговечности, мн. нет, ·жен. (·книж. ). ·отвлеч. сущ. к долговечный
.
долговечность         
ж.
Отвлеч. сущ. по знач. прил.: долговечный.
ДОЛГОВЕЧНОСТЬ         
1) свойство технического объекта сохранять (при условии проведения технического обслуживания и ремонтов) работоспособное состояние в течение определенного времени или вплоть до выполнения определенного объема работы. Долговечность характеризуется техническим ресурсом либо сроком службы. 2) Долговечность в строительстве - срок службы здания или сооружения.
Долговечность         
Долгове́чность — свойство элемента или системы длительно сохранять работоспособность до наступления предельного состояния при определенных условиях эксплуатации.
Долговечность семян      

продолжительность периода, в течение которого семена сохраняют способность к прорастанию. Различают Д. с. биологическую и хозяйственную. Биологическая Д. с. - период, в течение которого в партии семян остаются способными к прорастанию хотя бы единичные семена; хозяйственная Д. с. - период, в течение которого партия семян сохраняет процент всхожести, предусмотренный ГОСТом, т. е. остаётся кондиционной. Биологическая Д. с. может исчисляться десятками лет (например, у люцерны и клевера), хозяйственная - несколькими годами.

НАДЕЖНОСТЬ         
СПОСОБНОСТЬ СИСТЕМЫ ИЛИ ЕЁ ЭЛЕМЕНТА ВЫПОЛНЯТЬ СВОИ ФУНКЦИИ В ОПРЕДЕЛЁННЫХ УСЛОВИЯХ В ТЕЧЕНИЕ ОПРЕДЕЛЁННОГО ПЕРИОДА ВРЕМЕНИ
Надежность
комплексное свойство технического объекта (прибора, устройства, машины, системы); состоит в его способности выполнять заданные функции, сохраняя свои основные характеристики (при определенных условиях эксплуатации) в установленных пределах. Надежность охватывает безотказность, долговечность, ремонтопригодность и сохраняемость. Показатели надежности - вероятность безотказной работы, наработка на отказ, технический ресурс, срок службы и др.
Надёжность         
СПОСОБНОСТЬ СИСТЕМЫ ИЛИ ЕЁ ЭЛЕМЕНТА ВЫПОЛНЯТЬ СВОИ ФУНКЦИИ В ОПРЕДЕЛЁННЫХ УСЛОВИЯХ В ТЕЧЕНИЕ ОПРЕДЕЛЁННОГО ПЕРИОДА ВРЕМЕНИ
Надежность

изделия, свойство изделия сохранять значения установленных параметров функционирования в определённых пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, хранения и транспортирования. Н. - комплексное свойство, которое в зависимости от назначения изделия и условий его эксплуатации может включать Безотказность, Долговечность, Ремонтопригодность и Сохраняемость в отдельности или определённое сочетание этих свойств как изделия в целом, так и его частей. Основное понятие, используемое в теории надёжности, - понятие Отказа, т. е. утраты работоспособности, наступающей либо внезапно, либо постепенно. Работоспособность - такое состояние изделия, при котором оно соответствует всем требованиям, предъявляемым к его основным параметрам. К числу основных параметров изделия относятся: быстродействие, нагрузочная характеристика, устойчивость, точность выполнения производственных операций и т.д. Вместе с другими показателями (масса, габариты, удобство в обслуживании и др.) они составляют комплекс показателей качества изделия. Показатели качества могут изменяться с течением времени. Изменение их, превышающее допустимые значения, приводит к возникновению отказового состояния (частичного или полного отказа изделия). Показатели Н. нельзя противопоставлять другим показателям качества: без учёта Н. все другие показатели качества изделия теряют свой смысл, точно так же и показатели Н. становятся полноценными показателями качества лишь в сочетании с др. характеристиками изделия. Понятие "Н. изделия" давно используется в инженерной практике. Любые технические устройства - машины, инструменты или приспособления - всегда изготавливались в расчёте на некоторый достаточный для практических целей период использования. Однако долгое время Н. не измерялась количественно, что значительно затрудняло её объективную оценку. Для оценки Н. использовались такие понятия, как высокая Н., низкая Н. и др. качественные определения. Установление количественных показателей Н. и способов их измерения и расчёта положило начало научным методам в исследовании Н. На первых этапах развития теории Н. основное внимание сосредоточивалось на сборе и обработке статистических данных об отказах изделий. В оценке Н. преобладал характер констатации степени Н. на основании этих статистических данных. Развитие теории Н. сопровождалось совершенствованием вероятностных методов исследования, как-то: определение законов распределения наработки до отказа, разработка методов расчёта и испытаний изделий с учётом случайного характера отказов и т.п. Вместе с тем возникали новые направления исследований: поиск принципиально новых способов повышения Н., прогнозирование отказов и прогнозирование Н., анализ физико-химических процессов, оказывающих влияние на Н., установление количественных связей между характеристиками этих процессов и показателями Н., совершенствование методов расчёта Н. изделий, обладающих всё более сложной структурой, с учётом всё большего числа действующих факторов (достоверность исходных данных, контроль и профилактика, условия работы и обслуживания и т.д.). Испытания на Н. совершенствовались главным образом в направлении проведения ускоренных и неразрушающих испытаний. Наряду с совершенствованием натурных испытаний широкое распространение получили математическое Моделирование и сочетание натурных испытаний с моделированием. В результате к 50-м гг. 20 в. сформировались основы общей теории Н. и её частных направлений по отдельным видам техники.

Увеличивающаяся сложность технических устройств; возрастающая ответственность функций, которые выполняют технические устройства; повышение требований к качеству изделий и условиям их работы; возросшая роль автоматизации, которая сокращает возможность непрерывного наблюдения за состоянием устройства, - основные факторы, определившие главное направления в развитии науки о Н. Технические средства и условия их работы становятся всё более сложными. Количество элементов в отдельных видах устройств исчисляется сотнями тысяч. Если не принимать специальных мер по обеспечению Н., то любое современное сложное устройство практически будет неработоспособным. Так, например, в современной ЭВМ средней производительности за 1 сек происходит около 5 млн. смен состояний в результате переключений её двоичных элементов, число которых достигает нескольких десятков тыс. За 5 ч непрерывной работы ЭВМ, требуемых на решение типовой задачи, происходит свыше 1012-1014 смен состояний машины. Вероятность возникновения хотя бы одного отказа при этом становится достаточно большой, а следовательно, необходимы специальные меры, обеспечивающие работоспособность ЭВМ.

Техническим средствам отводят всё более ответственные функции на производстве и в сфере управления. Отказ технического устройства зачастую может привести к катастрофическим последствиям. Н. в эпоху научно-технической революции стала важнейшей проблемой.

Количественные показатели надёжности. Н. изделий определяется набором показателей; для каждого из типов изделий существуют рекомендации по выбору показателей Н. Для оценки Н. изделий, которые могут находиться в двух возможных состояниях - работоспособном и отказовом, применяются следующие показатели: среднее время работы до возникновения отказа Тср - Наработка до первого отказа; среднее время работы, приходящееся на один отказ, Т - Наработка на отказ; Интенсивность отказов λ(t ); Параметр потока отказов ω(t ); среднее время восстановления работоспособного состояния τв; Вероятность безотказной работы за время t [Р (t )]; Готовности коэффициент Kr.

Закон распределения наработки до отказа определяет количественные показатели Н. невосстанавливаемых изделий. Закон распределения записывается либо в дифференциальной форме плотности вероятности f (t ), либо в интегральной форме F (t ). Существуют следующие соотношения между показателями Н. и законом распределения:

Для восстанавливаемых изделий вероятность появления n отказов за время t в случае простейшего потока отказов определяется законом Пуассона:

Из него следует, что вероятность отсутствия отказов за время t равна Р (t) = exp(-λt) (экспоненциальный закон надёжности).

Технические системы, состоящие из конструктивно независимых узлов, обладающие способностью перестраивать свою структуру для сохранения работоспособности при отказе отдельных частей, в теории Н. принято называть сложными техническими системами (в отличие от сложных кибернетических систем, называются также большими системами (См. Большая система)). Число работоспособных состоянии таких систем - два и более. Каждое из работоспособных состояний характеризуется своей эффективностью работы, которая может измеряться производительностью, вероятностью выполнения поставленной задачи и т.д. Показателем Н. сложной системы может быть суммарная вероятность работоспособности системы - сумма вероятностей всех работоспособных состояний системы.

Способы определения количественных показателей надёжности. Показатели Н. определяются из расчётов, проведением испытаний и обработкой результатов (статистических данных) эксплуатации изделий, моделированием на ЭВМ, а также в результате анализа физико-химических процессов, обусловливающих Н. изделия. Расчёты Н. основаны на том, что при определенной структуре изделия и имеющемся законе распределения наработки до отказа изделий этого типа существуют вполне определенные зависимости между показателями Н. отдельных элементов и Н. изделия в целом. Для установления таких зависимостей используются следующие приемы: решение уравнении, составленных на основании структурной схемы Н. (использование последовательно-параллельных структур) или на основании логических связей между состояниями изделия (использование алгебры логики (См. Алгебра логики)); решение дифференциальных уравнений, описывающих процесс перехода изделия из одного состояния в другие (использование графов состояний); составление функций, описывающих состояния сложного изделия. Расчёты Н. производятся главным образом на этапе проектирования изделий с целью прогнозирования для данного варианта изделия ожидаемой Н. Это позволяет выбрать наиболее подходящий вариант конструкции и методы обеспечения Н., выявить "слабые места", обоснованно назначить рабочие режимы, форму и порядок обслуживания изделия.

Испытания на Н. производятся на этапах разработки опытного образца и серийного производства изделия. Существуют испытания на Н. определительные, в результате которых определяют показатели Н.; контрольные, имеющие целью контроль качества технологического процесса, обеспечивающего с некоторым риском Н. не ниже заданной; ускоренные, в ходе которых используют факторы, ускоряющие процесс возникновения отказов; неразрушающие, основанные на применении методов дефектоскопии (См. Дефектоскопия) и интроскопии (См. Интроскопия), а также на изучении косвенных признаков (шумов, тепловых излучений и т.п.), сопутствующих возникновению отказов.

Моделирование на ЭВМ является наиболее эффективным средством анализа Н. сложных систем. Широко распространены два алгоритма моделирования: первый, основанный на моделировании физических процессов, происходящих в исследуемом объекте (оценка Н. при этом определяется по числу выходов параметров объекта за пределы допуска); второй, основанный на решении систем уравнений, описывающих состояния исследуемого объекта.

Анализ физико-химических процессов также позволяет получить оценку Н. исследуемого изделия, т.к. часто удаётся установить зависимость Н. от состояния и характера протекания физико-химических процессов (соотношение показателей прочности и нагрузки, износостойкость, наличие примесей в материалах, изменение электрических и магнитных характеристик, шумовые эффекты и т.д.). Наиболее часто анализ физико-химических процессов применяется при оценке Н. элементов радиоэлектронной аппаратуры.

Способы повышения надёжности. На стадии разработки изделий: использование новых материалов, обладающих улучшенными физико-химическими характеристиками, и новых элементов, обладающих повышенной Н. по сравнению с применявшимися ранее; принципиально новые конструктивные решения, например замена электровакуумных ламп полупроводниковыми приборами, а затем интегральными схемами; Резервирование, в том числе аппаратурное (поэлементное), временно́е и информационное; разработка помехозащищённых программ и помехозащищённого кодирования информации; выбор оптимальных рабочих режимов и наиболее эффективной защиты от неблагоприятных внутренних и внешних воздействий; применение эффективного контроля, позволяющего не только констатировать техническое состояние изделия (простой контроль) и устанавливать причины возникновения отказового состояния (диагностический контроль), но и предсказывать будущее состояние изделия, с тем чтобы предупреждать возникновение отказов (прогнозирующий контроль).

В процессе производства: использование прогрессивной технологии обработки материалов и прогрессивных методов соединения деталей; применение эффективных методов контроля (в том числе автоматизированного и статистического) качества технологических операций и качества изделий; разработка рациональных способов тренировки изделий, выявляющих скрытые производственные дефекты; испытания на надёжность, исключающие приёмку ненадёжных изделий.

Во время эксплуатации: обеспечение заданных условий и режимов работы; проведение профилактических работ и обеспечение изделий запасными деталями, узлами и элементами, инструментом и материалами; диагностический контроль, предупреждающий о возникновении отказов.

В ходе развития техники возникают новые аспекты проблемы обеспечения Н. Так, например, внедрение больших интегральных схем требует принципиально новых методов расчёта их Н., применение систем автоматизированного контроля приводит к необходимости учёта его влияния на показатели Н. и т.д. Наука о Н. возникла на стыке ряда научных дисциплин, а именно: теории вероятностей и случайных процессов, математической логики, термодинамики, технической диагностики и др., развитие которых взаимосвязанно и находит своё отражение в развитии теории Н. Основное направление развития науки о Н. определяется общей тенденцией технического развития в различных отраслях народного хозяйства и задачами народно-хозяйственных планов страны. К числу наиболее актуальных вопросов теории Н. относятся оценка и обеспечение Н. сложных кибернетических систем. Проблема Н. является "вечной" проблемой, т.к. она всякий раз возникает в новой формулировке на каждом новом этапе развития техники.

Лит.: Шор Я. Б., Статистические методы анализа и контроля качества и надежности, М., 1962; Берг А. И., Кибернетика и надежность, М., 1964; Гнеденко Б. В., Беляев Ю. К., Соловьев А. Д., Математические методы в теории надежности, М., 1965; Сотсков Б. С., Основы теории и расчета надежности элементов и устройств автоматики и вычислительной техники, М., 1970; Бруевич Н. Г., Количественные оценки надежности изделий, в сборнике: Основные вопросы теории и практики надежности, М., 1971; Ллойд Д. и Липов М., Надежность, пер. с англ., М., 1964; Базовский И., Надежность. Теория и практика, пер. с англ., М., 1965; Барлоу Р. и Прошан Ф., Математическая теория надежности, пер. с англ., М., 1969.

Н. Г. Бруевич, Т. А. Голинкевич.

надёжность         
СПОСОБНОСТЬ СИСТЕМЫ ИЛИ ЕЁ ЭЛЕМЕНТА ВЫПОЛНЯТЬ СВОИ ФУНКЦИИ В ОПРЕДЕЛЁННЫХ УСЛОВИЯХ В ТЕЧЕНИЕ ОПРЕДЕЛЁННОГО ПЕРИОДА ВРЕМЕНИ
Надежность
ж.
Отвлеч. сущ. по знач. прил.: надёжный.
надежность         
СПОСОБНОСТЬ СИСТЕМЫ ИЛИ ЕЁ ЭЛЕМЕНТА ВЫПОЛНЯТЬ СВОИ ФУНКЦИИ В ОПРЕДЕЛЁННЫХ УСЛОВИЯХ В ТЕЧЕНИЕ ОПРЕДЕЛЁННОГО ПЕРИОДА ВРЕМЕНИ
Надежность
НАДЁЖНОСТЬ, надёжности, мн. нет, ·жен. (·книж. ). ·отвлеч. сущ. к надежный
. Надёжность предприятия. Надёжность средства.

Википедия

Долговечность

Долгове́чность — свойство элемента или системы длительно сохранять работоспособность до наступления предельного состояния при определенных условиях эксплуатации.

Что такое Долгов<font color="red">е</font>чность - определение